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stiffener about its line of attachment to the plating and has been
demonstrated by some recent British grillage tests to have serious
potential as a primary mode of failuye. The solutions developed
take into account the effects of (1) the rotational resistance

: provided by the plating to which the stiffener is attached, (2) non-
[ linear material and structural behavior by means of a tangent
modulus type approach, and (3) stiffener web deformations (for in-
plane loading). The equations are suitable for manual calculations
but particularly powerful applications are possible when they are
teamed up with a desk-top type mini-computer.

A number of comparisons between tripping predictions made using
these equations and numerical finite element results in general show
very good agreement. For the case of lateral loading the agreement
is less consistently acceptable, primarily because of the more
complicated nature of the tripping mode shapes and the inability at
present to include the effects of web deformations for this loading.
Comparisons are also made with experimental collapse data from two
of the British grillages which failed by tripping and the agreement
is quite good. Unfortunately, the mean tripping failure stresses
(the basis of these comparisons) are quite sensitive to the esti-
mates of plating effectiveness and thus wide variations in predicted
mean stresses are possible. Thus, this limited experimental vali-
dation is not as conclusive as might be hoped for.

The development of these design equations is quite timely in
view of the current interest being shown in the use of bulbs and
flat bars as stiffening members (for reasons of economy). Such
members are inherently weak with respect to tripping and their
application would require that careful attention be given to
tripping behavior.
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NOTATION
Af Cross-sectional area of stiffener flange
AS Cross-sectional area of stiffener
a Length of stiffener between transverse supports E
b Uniform stiffener spacing
be Plating effective width
C Rotational spring constant (moment/length) of
supporting plating
C0 Rotational spring constant of unloaded supporting
plating
Cj Coefficients in thin plate theory tripping equation
D Flexural rigidity of plating
Dw Flexural rigidity of web plating of stiffener
d Depth of flat bar stiffener; overall depth of
tee stiffener
dc Depth of stiffener to midthickness of flange
dw Depth of stiffener web
|
E Material Young's modulus |
Et Material tangent modulus é
Fm(K) Quadratic function for tripping under lateral
loading
fw Width of stiffener flange
fo,fl.f2 Coefficients in Fm(K) function
G Material shear modulus
H_(K),H (K) Quadratic functions for tripping under lateral
) - o loading
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Height of neutral axis of plate-stiffener combination
from midplane of plating

Coefficients in Hm(K) function

Coefficients in ﬁQ(K) function

Effective vertical moment of inertia of stiffener and
associated effective width of plating
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Polar moment of inertia of stiffener about shear center

Vertical moment of inertia of stiffener (alone)
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Moment of inertia of stiffener about web plane
Moment of inertia of stiffener flange about web plane

St. Venant torsion constant for stiffener
Mode shape weighing factor
Coefficients in axial load tripping equation

Coefficients in constant moment tripping equation

Vertical bending moment

Elastic, inelastic (vertical) tripping moments
Fully plastic moment of plate-stiffener cross section

Mode number
Axial end load

Structural proportional limit ratio

Uniform lateral loading (force/length)

Elastic, inelastic uniform lateral tripping load

vii




z
a,B

a,B,Y

Dimensionless rotational restraint parameter

Dimensionless rotational restraint coefficient

Plate-stiffener geometrical parameter

Height of stiffener shear center above toe
Plate thickness

Stiffener flange thickness
Stiffener web thickness

Total potential energy of structure

Potential energy of the loading

Total strain energy of the structure
Sideways flexure of stiffener shear center*

Sideways flexure amplitude coefficient
Sideways flexure of stiffener web midplane

Total work of applied forces

Work component of axial end load
Work component of uniform lateral loading

Vertical flexure of stiffener; lateral flexure
of plate*

Plate lateral flexure amplitude coefficient

Height of stiffener centroid above toe
Parameters in thin plate theory tripping equation

Empirical indices in combined load tripping
interaction formula

*Note:

X and z subscripts applied to these parameters indicate

partial derivatives with respect to those coordinates.
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8 Rotation of stiffener shear center®*

B8 Rotation amplitude coefficient

Stiffener longitudinal warping constant

Y Rotation of stiffener toe

§ Stiffener axial shortening

v Material Poisson's ratio

% Average axial stress in plating (alone)
oe Axial stress in stiffener

(o)

9 cre’(oe)cr Elastic, inelastic axial tripping stress in

stiffener
(Oe)mbe Axial stress in stiffener at elastic plate
P buckling for mode m
(oe) %e Axial stress in stiffener at minimum elastic
P plate buckling load
(cm)cre’ Elastic, inelastic mean axial tripping stress
() over the total plate-stiffener cross section
m'cr
ombe Classical, elastic, uniform plate buckling
P stress for mode m
o be'o b Elastic, inelastic uniform plate buckling stress,
P P minimum value
Ops Structural proportional limit stress
Ox’oz‘rxz Inplane axial and shear stress components in
stiffener web
Oy Material tensile yield stress
¢ Kernel of total potential energy integral

*Note: x and z subscripts applied to these parameters indicate
partial derivatives with respect to those coordinates.
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ABSTRACT

A series of design oriented equations to predict the
tripping (lateral-torsional instability) of stiffeners
under inplane and lateral loads has been developed which
will allow this mode of failure to be more comprehensively
addressed in the early stages of structural design. This
type of failure is characterized by a twisting of the
stiffener about its line of attachment to the plating and
has been demonstrated by some recent British grillage
tests to have serious potential as a primary mode of
failure. The solutions developed take into account the
effects of (1) the rotational resistance provided by the
plating to which the stiffener is attached, (2) non-
linear material and structural behavior by means of a
tangent modulus type approach, and (3) stiffener web de-
formations (for inplane loading). The equations are
suitable for manual calculations but particularly power-
ful applications are possible when they are teamed up
with a desk-top type mini-computer.

A number of comparisons between tripping predictions
made using these equations and numerical finite element
results in general show very good agreement. For the
case of lateral loading the agreement is less consistently
acceptable, primarily because of the more complicated
nature of the tripping mode shapes and the inability at
present to include the effects of web deformations for this
loading. Comparisons are also made with experimental
collapse data from two of the British grillages which
failed by tripping and the agreement is quite good. Un-
; fortunately, the mean tripping failure stresses (the
1 basis of these comparisons) are quite sensitive to the
estimates of plating effectiveness and thus wide
variations in predicted mean stresses are possible. Thus,
this limited experimental validation is not as conclusive
as might be hoped for.

The development of these design equations is quite
timely in view of the current interest being shown in
the use of bulbs and flat bars as stiffening members (for
reasons of economy). Such members are inherently weak
with respect to tripping and their application would
require that careful attention be given to tripping
behavior.

ADMINISTRATIVE INFORMATION
The work described in this report was performed at the David W. Taylor
Naval Ship Research and Development Center under the sponsorship of the




NAVSEA 6.2 Exploratory Development Program, specifically the Surface Ship
Structures Block, Program Element 62543N, Task Area SF 43 422 593 and
Work Units 1730-593 and 1730-610.

INTRODUCTION

A series of tests on ship-type steel grillages conducted at the Naval
Construction Research Establishment (NCRE) and recently reportedl* has
clearly demonstrated the significance of lateral-torsional instability
(tripping) as a primary ductile failure mode for ship structure. The
potential for such failure has important ramifications with regard to
structural weight, fabrication cost, and structural reliability. Whereas
tripping brackets, which are perhaps the most common measure employed to
prevent this ailment, are advantageous from a weight standpoint, they
suffer the disadvantages of increasing fabrication cost and of introducing
hard spots at their toes which may give rise to fatigue problems and weaken
the structure under explosive loading. In any case it seems clear that the
ability to predict tripping failure in the early stages of design can have
important consequences on the design of both conventional and high
performance ships.

Surprisingly little material exists in the literature on the subject
of tripping of stiffeners welded to continuous plating. In the elastic

region tripping stresses can be estimated using approximate formulasz’3

(for certain selected cases of loading) or more generally using folded-

platea’s

or finite element analysis. In the inelastic region no satis-

factory method appears to exist at present although the application of

incremental finite element analysis would appear to offer great promise.
The main thrust of this study is the development of fast, approximate

methods of tripping analysis for particular application in the concept,

feasibility, and preliminary stages of design. As mentioned above,
approximate formulas do exist in the literature, however, the work
described herein both modifies and extends these previous efforts. As
with these previous efforts, the solutions developed are elastic in nature;

inelastic effects must be accounted for by modifying the elastic solutions,

*A complete listing of references is given on page 87.




an admittedly crude approach. Nevertheless, the value of having relatively

simple, approximate solutions at the early design stages (when more sophis-

ticated solutions ave often not practical) cannot be overstated; many of
the most significant and critical decisfons are made during these early

design stages.

TRIPPING UNDER AXIAL OR LATERAL LOADS
Lateral~torsfonal, or tripping instability is characterized by a twist-
ing of the stiffener about {ts line of attachment to the plating. This
deformation pattern involves both sideways and vertical {lexure (v,w) and

rotation (B) of the stitfener as shown in Figure 1. It the centerline of

A:

0

Figure la - Coordinate Svstem

HEIGHT OF
SHEAR CENTER

y -

V-

Figure 1b - Uadeformed Figure l¢ = Deformed

Figure 1 = Characterfzation of Tripping




the web at any transverse cross section is not allowed to curve, then the
three displacement degrees of freedom v, w, and f are coupled since, for
small displacements, v = z8 and w = -y8.

The critical load for tripping 1s approximated by applying Rayleigh's
principle. This principle states that for all possible deformations, the
total strain energy V is greater than or equal to the work W done by the
externally applied forces (or by the internal stress field arising from
such forces). As a consequence, it is possible to obtain an approximate
critical buckling stress, one that is always greater than the true
buckling value, by equating the total strain energy and external work,

f.e.,
V=W (1)

Inherent in the method is the assumption of a buckled mode shape; equating
the energies as indicated by Equation (1) will provide either upper bounds
to the critical stresses or exact solutions in the unlikely event of the
assumed mode shape being exact.

The total strain energy stored in the structure in the buckled state
(neglecting the energy of vertical bending in the flange) is given by the

following expression

2

a
1 2 2 2
\Y 7 I [EIz , 9 + ET Bxx + GJ Bx + CB”] dx (2)
0

where v and 8 here refer to the translation of and rotation about the
shear center of the stiffener and the x subscripts indicate partial
derivatives with respect to x. The strain energy is made up of contri-
butions from (in the order of appearance above) sideways bending, longi-
tudinal warping, torsion, and rotation of the supporting plate structure
modeled as an elastic spring. Since the sideways flexure of the shear

center is coupled to the rotation B as indicated, .




v =B (3)

the sideways bending and longitudinal warping terms can be combined to
give

a
V= % I [E(Iz§2+r) Bix + GJ 3:2( + cBZ] dx (4)
0

In this expression a is the length of the stiffener between transverse
supports, E and G are the Young's and shear moduli of the material, re-
spectively, and C is the rotational spring constant (per unit length) of
the supporting structure. The coefficients Iz, ;, [, and J are defined in
Figure 2 in terms of the geometry of the stiffener.

Although Equation (4) may be applied to flat bars as well as flanged
stiffeners, it is perhaps more appropriate for thin flat bars to use the

expression for strain energy derived from thin plate theory, namely

a d(x)

1 2 2
' - % D {(vxx+vz )T = 2(1-v) [vxx v - vxz]} dxdz

z zz

ot
o

+% f c8? dx (5)
0

where D' is the well known plate flexural rigidity (for the flat bar),
v 1is Poisson's ratio, and d(x) represents the depth of the flat bar at
location x.

In computing the work W the nature of the external loading will often

dictate the form of the expressions used. When axial end thrusts and/or

moments are applied at the stiffener ends it is usually most convenient to
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Figure 2 - Geometrical Tripping Parameters for Tee Stiffeners
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compute the component of work done by these forces by integrating the
product of the axial stresses arising from these forces and the axial

shortening 8(y,z) of the stiffener at the point in question, namely,
W= ]"Ox 8(y,z) dydz (6)

As the expression suggests, the integration is carried out over the area
of the stiffener end. When the stiffener has lateral loading the above
approach cannot be applied, rather the work done by the internal stress

field arising from the lateral loading is computed according to

d,(x)

a
2 2

W J. J [Ox(vx) + Oz(vz) -2 SO 8 vz] L dzdx

0 0

N =

a
&2

J [ox(vx*&wx)]z_dc £ tedx (7)

0

+

N

where the first integral represents the action of the stress field in the
web and the second that in the flange. When both lateral and end loadings
are present, the stress fields arising from each set of loads may be
separated and the corresponding work components computed according to
Equations (6) and (7), as appropriate.

The signs of the terms in Equation (7) differ in some respects from
those found in other references. This is due to the assumption of
compression as a positive stress and tension as negative. (This is quite
common in compression instability work.) Figure 3 defines the sign
convention adopted in this report for the Oys Oy and ot stresses and the

corresponding equilibrium equations which are consistent with Equation (7).




EQUILIBRIUM EQUATIONS

& - —_at‘z - o
9x oz
T
z Xz -
-k 0 ;

Figure 3 - Sign Convention for Inplane Axial and Shear
Stress Components

TRIPPING UNDER END LOADS

Consider a single stiffener of constant cross section and its
associated frame space of plating loaded by an axial inplane force of
magnitude P as shown in Figure 4. The ends of the stiffener will ex-
perience a uniform axial stress oe which is related to the cross sectional
area of the stiffener As' the plating thickness t, and the plating
effective width be, as follows,

(8)

In terms of the stress components in the stiffener, ox. Oy and sz, this

translates into




P—> - !

Figure 4a - Axial Force

Figure 4b - Constant Moment

O e
7 T

Figure 4c - Uniform Lateral Load

Figure 4 - Geometry of External Loadings

o, =0, (9) 1
9. =0 (10)
Ty ™ 0 (11)
S
To calculate the strain energy in the stiffener and the work done by ;

the axial load, an assumption has to be made for the buckled mode shape.
Because of the repeatability and continuity of typical ship structure, it
is logical to select a mode shape incorporating simply supported




boundaries, (Bxx-o) at the ends x = 0 and x = a in addition to the require-
ments for zero displacements (B=0). Perhaps the simplest choice which
satisfies these conditions is to assume

B =B, sin 1}"— (12)

Substituting this mode shape into Equations (4) and (5) and performing
the necessary operations provides the total strain energy for flanged
stiffeners,

V= % a eg [E(Iz;2+r) (:—") : + GJ (:—") ; + c] (13)

and for flat bars of depth d,

2 2
1 2 (mm mn 2 1 2
V=130, ads () [(a ) ¢ +6(1-v)]+zasoc (14)

The work done by the axial inplane force is computed according to
Equation (6). The relative displacement of the two ends of the stiffener
§ due to its curvature for a fiber at location (y,z) is given by

a
1 2 2
§(y,z) 7 I [vx + wx] dx (15)
0
Since v = zf and w = -yf, this expression transforms to
a

s0a) =3 [ 1+ yh 6l e (16)
0

10




which, in turn, upon substitution of Equation (12) becomes

2
S(roe) = ¢ 128 + 5% 82 (2) a (17)

The work, therefore, is
1 2 /mn) 2 2.3
U-oe°zﬂo(;—) a [z + y7) dydz (18)
A
s

where the integration over the stiffener cross section is carried out at

the point of load application. Since

J.J' (22 + y2) dyde = I (19)
As

(see Figure 2) the expression for the work of the external force may be

further transformed,

2
- 2 (mm 5
W=z o, so(a) al (20)

Equating the total strain energy and the work leads to the critical
elastic value of stress for stiffener tripping. “For flanged stiffeners

this stress is

2 2
CRN (%—) [m + z(:z§2+r) (%’l) +C (‘—fﬁ) ] (21)

and for flat bars,

11




Dd 2 2
1l "w mn 2 C /a
(oe)cre . & [(;_-) g+ 6(1-v)] - 1 (E?) (22)
P P
where (for flat bars)
1 i e | 3 1 3
1p 3 :wd + 13 dt" = 3 twd (23)

In actual fact these solutions are exact, as comparisons with
published solutions6 will demonstrate. (This is of course subject to the
condition stated earlier of zero curvature Yoo of the stiffener web.)
Thus, Equation (12) in this case represents the exact tripping mode shape.

When there is no restraint against rotation, C = 0, it can be seen by
inspection that the lowest buckling stress occurs for one wave, m = 1,
When C is nonzero, the mode number for which (Oe)cre is lowest is
dependent on the degree of restraint. Although m takes on only integer
values, the determination of the critical stress can be simplified by

setting

(o)

e’cre
e 0 (24)

solving for m, and then comparing the tripping stresses for the two integer

values of m which bracket this value. From the above conditions one

obtains
1/4
me g —‘9:‘2‘“—] s
E(I s“+I")
z
for flanged stiffeners, and
1/4
m-%[ 3°3] (26)
Dd
w
for flat bars,
12




It is important to note here that the stress (oe)cr is a peak stress

at the stiffener location and that when the effective wigth of the plating
be is less than b this stress will be greater than both the corresponding
average stress in the plating Oy and the mean stress over the total plate-
beam cross section, Om. These definitions of stress are illustrated in

Figure 5. Since the mean stress is frequently used in design calculations

[
<

AVERAGE PLATE STRESS o = Ei 0

————

A‘*bet
MEAN STRESS O- - W Ue

Figure 5 - Distribution of Inplane Stress




the peak stresses given by Equations (21) and (22) can readily be con-

verted to the mean form according to

As+b -
(0.) -(————e—) (0 ) @7

m cre As+bt e‘cre

The distinction between peak, average (plate), and mean stresses is a
particularly significant point with regard to tripping since it is the
stress which actually occurs in the stiffener which is critical and the
treatment of (oe)cte as either an average or a mean stress can lead to
very unconservative estimates of the loads required to cause tripping.

For example, current Navy design practice assumes that primary stresses
are distributed uniformly over the total plate-beam cross section provided
that these stresses are less than those required to cause plate buckling.
If this is true (and only primary stresses are present) then all the
stresses are identical, i.e., oe = 08 = om. In actual fact, however,

imperfections associated with real structure will cause a reduction in

plating effectiveness even prior to plate buckling and lead to a nonuniform

distribution of primary stress as Figure 5 illustrates. In this situation
the failure to take into account the fact that the stress in the stiffener
O is higher than the calculated mean stress & could lead to an unpleasant
surprise since the tripping streéss in the stiffener will be achieved at a
loading somewhat lower than that predicted by the assumption of uniform
primary stress, The degree to which peak and mean stresses will differ is
a function of plating effectiveness, as represented by the effective width
(and the effective breadth where secondary loads are also present) and the
accurate prediction of stiffener tripping 1§ clearly dependent on the
ability to reasonably estimate this effectiveness.

If the plate-stiffener combination is loaded by a constant moment M,
as shown in Figure 4b, the stress distribution will no longer be constant
over the cross section but rather will vary linearly from plate to flange.

Thus in terms of ox’ oz' and rxz one obtains

gy - (%) (z—h+ % t) (28)

14




(29)
T =0 (30)

where I is the vertical moment of inertia of the stiffener and its
associated effective breadth of plating and h is the corresponding location
of the neutral axis from the midplane of the plating.

1f the same mode shape, Equation (12), is assumed, then the ex-
pressions for total strain energy are once again given by Equations (13)

and (14). The work is computed using Equations (6) and (17) leading to

i

vk (2) o

)JJ Is" %3] [z - b % t:’ dydz (31)
A
S

i e

The integral in this expression is broken up into two parts, one for the ]

web and one for the flange

J.J’ [22+y2][z-h+-2]:-t] dydz
A
S

1
dw +—ftw %
-j J [zz+y2]{z—h+%t]d_vdz
0 1 i
~3 %
1
d +—2—fw
+J j [zz+y2] [z - h+%t] dydz (32)
e R |
i wa {
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R R — e R

Because the web depth and flange width are typically much larger than the
web and flange thicknesses, these integrals can be simplified by making
certain approximations, resulting in

Jt[ [zz + y2] [z - h +-% t] dydz
A
s

= - (h - -;— t) j‘j’ (zz+y2) dydz

A
s
1
d G 2 fw
w
3 2.2
+ J z tw dz + J' dc(dc+y ) tfdy
0 1
2%
1 1 4 2 1 3
3 (h- 2 t) Ip * 4 twdw 2 dc (dctffw = 12 fwtf)
= l 4 = - _]: 2 - \
Z [twdw 4 (h : t) I+ 4 dc(Afdc+sz)] - (33)

where sz and Af are the moment of inertia about the web plane and the
cross sectional area of the stiffener flange alone, respectively. Because
this geometrical parameter will continually reappear in the later sections
of this report it has been denoted by the symbol S as indicated above.
The above expression is valid for both flanged stiffeners and flat bars
although for flat bars the last term is obviously zero since both Af and
sz are identically zero.

Making use of this definition, the work done by the applied moment

is given by

wet g2 () a(¥)s 4 (34)




As with the case of a concentrated force, the critical moment for
elastic tripping is determined by equating the total strain energy and

the work. The resulting expressions are
I —2 m7 2 a :
M, = (g) [E(Izs +T) (a—) +GJ +(m—") c] (35)
for flanged stiffeners, and

+(§\—“-) : c] (36)

fere = (3) [ 00 {(2) " 2 4 sw

for flat bars.

For the case of no restraint against rotation (C=0) the critical
moment also occurs for the mode shape corresponding to m = 1. When re-
straint does exist, the critical moment may be found using the same pro-
cedure as that described for constant force loading, and in fact, it is
quite easy to show that the values of m, for which Mcre is minimum, are
given by the identical expressions, Equations (25) and (26). It is also
noteworthv that, for all practical considerations, only positive moments
will cause tripping as indicated by Equations (35) and (36). Only when the
neutral axis is located at a significant distance from the plating may a
negative moment be likely to cause tripping and, in this case, the assumed
deformation used in the preceding development would probably not be

appropriate.

TRIPPING UNDER UNIFORM LATERAL LOADING
Many stiffened plate components of a ship routinely experience lateral
loadings such that the possibility of tripping collapse due to such load-
ings (or at least in conjunction with inplane loading) is a definite
possibility. If this type of failure is to be avoided, it is clear that
the ability to predict tripping behavior under lateral loading is

17

-




necessary. Since in many design calculations lateral loadings are
idealized as uniformly distributed, the development which follows assumes
such a distribution. However, the technique employed is not restricted to
uniform distributions and can readily be applied to others as the need
arises,

The critical lateral load for stiffener tripping is computed in the
same manner as that for concentrated end loading, that is, the strain
energy V is equated with the external work W for an assumed displacement
function. In this case, however, W must be determined by computing the
work done by the internal stress field arising from the presence of the
lateral loading as indicated in Equation (7).

For a single stiffener and its associated frame spacing of plating,
simply supported at its ends, the stress compcnents due to a uniform

lateral loading q, (positive in the positive z direction) are as follows,

(%) (z—h+ % t) (xz—ax) (37)

1 2 1 2 1)
hyd =5 +(h-§t)(z—dw):| (39)

(These stresses can readily be shown to satisfy the equilibrium equations

given in Figure 3.)




Although it would appear logical to again adoot Eguatiom (12) as che
agsumed displacement function, experience has indicated chac due co che
conicentration of high 7, stresses around the midlength of the sciffemer
this function is in serious error with respect to che true buckiea scate.
An improved displacement functiom cam be comstructed Lv including 2 compo—
nent of the next higher mode along with the primarv mode. speeifically,

3=8 |Kstn ™= o (k) smi‘—"%m‘- 40)

where m is the primary mode number. This expression incorporates an
uniknown coefficient K, which, in general, mav take on values between
approwimately 1.5 and 0. Since the applicatiom of Raylieigh's principle
produces a buckling load which (g always greater than the true value, the
appropriate vialue of K is selected by minimizing the value of the buckiing
load with respect to K.

The strain energy expresaions are determined by substituring Equation
(40) into Pquations (4) and (5) and performing the necessarv operations.
This leads to

2
vezad(l) arr (41)

for flanged stiffeners, and

2

1 2 =
¢ = 350, ad ao( ) H® (42)

FRE]

for flat bars., 1h thease expreassions Hm(K) and ﬁﬁ(K) are shorthand
totatict for quadtratic functions in K which are defined as follows:
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H(K) = [{mzl(z + m2)% ®-12} + @2

+ (@) (k-1)?) (g)z(g—) (1,524T)

2
+ 0+ kD)%) (2) gj] (43a)

ﬁm(l() = [(3@) {m K + (m+2) (1(-1)2}
+6(1-v) 0%k + m2)? ®k-1)%)

2
3C /a 2 2
+ B;E (F) {K® + (x-1) }} (43b)

The work W done by the internal stress field is calculated using
Equation (7), giving

W= - ($) 2 asrE (46)

where once again, for reasons of convenience, shorthand notation is used

to represent a quadratic function in K, namely

Z 22 3 6m
F (K) =m K 1--————>-+-—— (m+2)‘ 1
( non 2

=2 : 'xu—x) + m2)? (k-1)2 {1
(m+1)
64,
3 1 2 ] 2
- Act.(d b+ L ¢) + b e2n| [k
nz(mz)z} o 8 [f f( t) .
2
+ (k-1)?] (45)




Equating the strain energy and the work, and then solving for q
results in the critical value of the lateral loading. For flanged

stiffeners one gets

. _12rer | By

9ere Saz § Fm(K) (46)

and in a similar fashion for flat bars,

4IdDw Hm(K)

q w - . (47)
cre Sa2 Fm(K)

The above expressions for . TR contain the parameter K whose value at
this point is still unknown. As previously mentioned the appropriate
value of K is determined by minimizing the value of , T with respect to K.
This process is routinely carried out by setting the derivative,
chre/BK = 0 and solving for K.

In the above expressions for Yore? the K terms only appear in the
Hm(K)/Fm(K) and Hm(K)/Fm(K) ratios. Since the H's and F's are quadratic
functions, they can symbolically be represented in the form

H (K) = h) +hK+ h2K2 (48a)

0 1

2
Fm(K) = fo + f1K + fZK (48b)

It can readily be shown that setting the derivative aqcre/BK equal to zero
leads to a third quadratic equation in K,

2
[hlf2 - hzfllk + 2[h0f2 - hsz]K + [hof1 - hlfol 0 (49)
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the solution of which provides the value of K for which Hm(K)/Fm(K), and

hence, e is a minimum. The above equation being quadratic, usually
two distinct values of K will result. The appropriate choice of K,
however, is usually quite obvious as is discussed later in Appendix A in
connection with the illustrative examples.

The expressions for Hm(K), ﬁ;(K), and Fm(K) as given by Equations (43)

and (45) are not in the form required for the determination of K according

to the method represented by Equation (49). These expressions have been
rearranged, however, and the forms most appropriate for use with Equation
(49) are presented in Appendix B.

If the ends of the stiffener and its associated frame space of plating
are clamped rather than simply-supported, the stress components due to a

uniform lateral loading q are as follows,

Gx = %-(%) (xz-ax) (z—h+ % t) + %5 (%) a2 (z—h+ % t) (50)

vefbd-ta et (Ge)]] e

1(s b L |
T = 7 ($) (@20 [cw (dch* 3 ©)

+3d2-3 ot % (n- 2 ¢) (z-dw)] (52)

If Equation (40) is again selected as the assumed displacement
function, then the strain energy expressions are the same as for the
simply supported case, namely Equations (41) and (42). The expressions

for the external work, however, will not be identical since the o, stress
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component is different. The differences are entirely within the definition
of the function Fm(K), however, so that Equation (44) is valid for the
clamped condition with Fm(K) now defined as

3 2 6m 1 3 2
F (K) = - —= K" + — (m+2) !1 + l K(1-K) - —= (K-1)
m n2 ﬂ2 ‘(m+l)2 T‘2
-3(1‘—' At d—mlc) +bt2h [K2+ (K- 1)2] 53
aés ff(c 2 e i (53)

Using this definition of Fm(K) the critical value q may be computed

cre
using Equations (46) and (47) and the procedure previously outlined to
determine the appropriate value of the parameter K. The expressions for
the '"clamped'" version of Fm(K) in the format which is symbolically

represented by Equations (48) is also provided in Appendix B.

COMPARISONS WITH NUMERICAL SOLUTIONS

To demonstrate the application of these solutions and to shed some
light on their approximate ranges of validity, several comparisons were
made with solutions obtained by the finite element method, specifically
with a program developed and documented at the University of California.7
Both a flat bar and a tee stiffener configuration were considered, the
proportions of which are provided in Figure 6.

Because of the symmetry of the structure and its response, it was
necessary to model only one-half of each stiffener for the finite element
analyses. A uniform mesh consisting of 10 rectangular plate elements in
the x-direction and 8 elements in the z~-direction was employed. The flange
of the tee stiffener was modeled by an additional 10 bar-type elements.
Although assumptions inherent to the finite element method mean that so-
lutions obtained using the method are themselves approximate, the moder-
ately fine mesh employed here can be expected to produce results which are
at most a few percent different from the so-called theoretically "exact"

values.
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Figure 6 - Stiffener Geometries for Comparative Solutions

Tables 1 and 2 provide buckling stress, moment, and lateral load
coefficients for the first two modes for the case of zero rotational re-
straint at the stiffener base, i.e., C = 0. For the cases of axial end
load and end moment agreement is, in general, very good between the finite
element and energy solutions. For lateral loading, the agreement between

the two methods of solution varies from very good to very poor, with the




TABLE 1 - TRIPPING STRESS COEFFICIENTS UNDER END LOADS
AND MOMENTS (NO ROTATIONAL RESTRAINT)

Flat Bar
4
Tripping Stress [(0.) . /E] x 10
Mode Coefficient
m
Finite Element | Eqn. (22)
1 6.44 6.42
7.58 7.51
Tripping Moment [M . (d-h+-% t) x 104] / [IE]
Mode Coefficient o
m
Finite Element Eqn. (36)
1 9.04 8.99
2 10.66 10.52
Tee Stiffener
4
Tripping Stress [(d)) . /E] X 10
Mode Coefficient
m
Finite Element Eqn. (21)
1 26.4 26.3
Z 65.9 72.6
Tripping Moment [M 5 (dc-h+-% t) X 104] / [IE]
Mode Coefficient
m
Finite Element | Eqn. (35)
1 29.4 29.0
75.1 80.1
25
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TABLE 2 - TRIPPING LOAD COEFFICIENTS UNDER UNIFORM
LATERAL LOAD (NO ROTATIONAL RESTRAINT)

Flat Bar
az(d—h+ % t)
Tripping Load 100 q ————
M:de B.C.* Coefficient g -
Finite Element Eqn. (47)
1 SS -1.13 -1.12
2 SS -1.20 -1.18
1 C + 1.76 + 1.96
2 + 3.18 + 3.90
Tee Stiffener
az(dc-h+ %‘t>
Tripping Load 100 q
M;de B.C.* Coefficient ik 8
Finite Element Eqn. (46)
1 SS - 4.59 - 5.20
2 SS - 9.03 -10.09
1 € + 6.54 + 7.91
2 +17.91 +40.76

*B.C. = Boundary Conditions, SS = Simple
Support, C =

Clamped.




flat bar simply supported showing the best agreement and the clamped tee
stiffener the worst. If restraint is added along the base of the stiffen-
ers the discrepancies between the two methods consistently grow as the
amount of the restraint is increased. This trend is clearly illustrated
in Tables 3, 4, and 5 where buckling coefficients are tabulated as a

function of a dimensionless restraint coefficient Rc’ defined as

2
a_
R, = \ (“’“) = (54)
-2 mT
GJ + E(Izs +I) (;—)

for flanged stiffeners, and

(n)

R = = (55)

3.4 [( ) a? + 6(1- v)]

for flat bars.

If the finite element data is examined in more detail it becomes
quite apparent that the primary cause of the discrepancies noted above is
the presence of web deformations. To prevent overly optimistic buckling
predictions, Faulkner in his work3 suggested an upper limit on the value

of C used as follows,

< 10 (56)

For the tee stiffener cited here, however, this corresponds approximately
to a value of Rc = 4,1 (for m=1) and from the data presented in the
tables, the above limit itself would appear to be overly optimistic.
While the lack of consideration of web deformations appears to be
the primary cause of the discrepancies noted in the tables, a possibly
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TABLE 3 - TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END
LOADS AND MOMENTS WITH ROTATIONAL RESTRAINT

Flat Bar

&
Tripping Stress [(Oe)cre x 10"]/E

Mode 0 Coefficient
m c
Finite Element Eqn. (22)
6.44 6.42
7.58 7.51
3 - 9.33
1 2.0 17.6 19.3
2 0.427 10.5 10.7
3 0.153 10.9 10.8
1 10.0 41.2 70.6
2.14 16.9 23.6
3 0.764 14.1 16.5
Tripping Moment [ﬁcre (d—h+ %-t) x 104J / [IE]
Mode Coefficient
m Rc ‘
Finite Element | Eqn. (36)
9.04 8.99
0 10.66 10.52
1 2.0 24.3 27.0
0.427 14.6 15.0
1 10.0 I 98.9
2.14 22.8 33.0
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TABLE 4 - TRIPPING STRESS COEFFICIENTS FOR TEES UNDER END
LOADS AND MOMENTS WITH ROTATIONAL RESTRAINT

Tee Stiffener

Tripping Stress [(Oe)cre x 104]/E

Mode R Coefficient

m c

Finite Element Eqn. (21)

1 26.4 26.3

2 65.9 72.6

1 0.826 45.3 48.0

2 0.0748 73.3 78.0

1 1.65 56.4 69.7

2 0.150 i 83.4

1 4.96 75.5 156.6

2 0.449 85.6 105.2

1 8.26 82.7 243.5

2 0.748 88.6 126.9

1 4
Tripping Moment Mcre (dc-h+-§ t) x 10 [1IE]

Mode R Coefficient

m c

Finite Element Eqn. (35)
1 29.4 29.0
75.1 80.1

1 0.826 49.7 53.0

2 0.0748 82.1 86.0

1 1.65 61.4 76.9

2 0.150 86.3 92.0
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TABLE 5 - TRIPPING LOAD COEFFICIENTS UNDER UNIFORM LATERAL LOAD
WITH ROTATIONAL RESTRAINT

Flat Bar

Teipping Load 100 q

“2 (d—h+ l_ ()

— e

Bt s o

M:;dc Rc B.( Coeffic{ent -
Finite Element Eqn. (47)
1 0 SS - 1.13 ~ 112
2 Q SS - 1.20 - 1.18
1 0 C + L.26 4 1. 96
2 0 C + 3.18 + 3.90
2 0,427 S8 = 1.49 = 1.53
3? 0.153 S8 - 1.53 = 1.0l
1 2.0 C L 0 B + 4. 34
2 0.427 C + 3.69 * &.91
3? 0.764 S8 - 1.89 o 3l
4? 0. 338 SS - 1.91 - 2.30
2 2. 14 L + 4,049 + 8.35
3?2 0. 764 C + 4,30 + 8.18
Tee Stiffener
|\ (d(_-ln» l‘ ()
T e T
5 R‘_ B.C.
Finfte Elemeant Equ. (46)
I 0 S8 - 4.59 -
2 0 S8 - 9.03 =10.09
1 0 C + 6.5 + 7.91
2 0 C +17.91 +40.76
l 0.826 SS - 0,70 - 8.75
P4 0.0748 58 - 9,05 -10.79
| 0.826 C +10.7 +13.3
2 0.0748 C +20.1 +42.7
1 8.20 S8 ~lo.1 -20.7
2 0.748 SS =11.0 ~16.8
1 8.26 C +17.3 +40.2
2 0.748 C +24.4 +58.3

C = Clamped.

= Indicates uncertainty as to mode number.

*B.C. = Boundary Conditions, S5 = Simple Support,
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significant source of error for the case of lateral loading, particularly
positive pressure, is the distribution of out-of-plane displacements in
the x-direction as defined by Equation (40). The presence of this source
of error is most detectable in these examples for flat bars having zero
rotational restraint about their line of attachment since, in this
situation, little if any distortion of the web occurs and, therefore, the
lack of clo: agreement with the finite element results cannot be ascribed
to the neglect of web deformation.

Despite these discrepancies noted, Equation (40) does a good job,
qualitatively at least, in describing the tripping phenomena for modes
m=1and m = 2 when rotational restraint i{s nonexistent or very small.

As rotational restraint increases, the tripping patterns become in-
creasingly complex and soon this complexity reaches a stage where it is
exceedingly difficult to associate a specific mode number with a particular
buckling pattern, as the question marks appearing in Table 5 indicate.
This is due to the concentration of tripping deformations in the regions
of the stiffener undergoing compressive loading, with strongly attenuated
or no deformations at all in those regions experiencing tension. Thus,
tripping deformations under negative lateral loading will tend to be
concentrated in the midsection of the stiffener while those associated
with positive lateral loading will be concentrated at the two ends. 1Iun
fact, for positive lateral loading and practical geometries (assuming there
is sufficient vertical fixity to produce regions of compressive stresses)
there are effectively only two buckling modes, one symmetrical and the
other antisymmetrical about the stiffener midpoint. As the degree of
rotational restraint increases, the deformations associated with both
modes become more and more concentrated towards the ends until for large
degrees of restraint (particularly for long stiffeners) the buckling
patterns may be completely localized in the compression regions. As the
buckling patterns become more localized, the corresponding tripping loads
approach a common value. Consequently, for long stiffeners (large a/d)
with moderate to high rotat{onal vestraint, the tripping load for both
modes are effectively identical with the mode shapes essentially differing

only with regard to their conditions of symmetry.
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The rapidly deteriorating accuracy of the tripping solutions described

in this section as rotational restraint increases, clearly indicates, even
though based on very limited geometries and data, that these solutions are
at best suitable for problems with zero or very limited amounts of such
restraint. Because of the number of variables involved, parametric studies
would be required to effectively define the degree of rotational restraint
below which an acceptable level of accuracy could be guaranteed. Since

the use of finite element programs in such studies can present significant
economic stumbling blocks, an alternate approach was adopted which led to
the development of approximate analytical solutions which take into account
web deformations and are suitable for either hand calculation or programming
on desk-top computers. These solutions are described and evaluated in the
next section. Unfortunately these solutions are available only for the
cases of axial end load and constant moment, and not for lateral loading.
Consequently, semiempirical solutions will probably have to be developed
for tripping under lateral load, making use of the analytical work pre-
sented here, finite element results, and any other relevant data available,
at least until an improved analytical solution for this particular loading

case is developed.

EFFECTS OF WEB DEFORMATIONS

In the previous development the critical assumption was made that the
centerline of the web at any transverse cross section would not curve,
i.e., for small deflections, v = z8. As the selected finite element so-
lutions have demonstrated, however, this assumption in certain circum-
stances can lead to buckling predictions which are considerably higher than
the true values. Since the proportions of the two stiffener examples
studied are not untypical of ship-type structures, it is clear that so-
lutions which take into account web deformations would be most valuable.

If the web is allowed to curve, then for small deformations the dis-
placement of any point on the centerline of the web can be described in
terms of a translation v and a rotation . If a deformation function {is

assumed for the web, then the displacement of any point on the web
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centerline can be described in terms of the v and B of a single chosen
point, in this case the shear center, as shown in Figure 7. (In the
following development the location of the shear center is assumed to be

at the intersection of the web and flange centerlines, i.e., E’zfdc. and
although only approximately true, the shear center is indeed very close to
this point for stiffeners with flanges of typical proportions and the
consequences of this approximation are insignificant.) A logical deforma-

tion function is that of a beam, cantilevered at one end (the flange end)

2 82 2 2 C
+ ‘a— (*‘2- - 1] +R d ( -3 ) ’ ch
c clc ¢ ¢

Figure 7 - Characterization of Web Deformations
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and loaded by a concentrated force and moment at the other (corresponding

to the restraining force and moment generated by the plating to which the

stiffener is attached). In terms of the v and B displacements of the

shear center this assumption gives the following expression for the lateral

displacement v of any point on the stiffener web,

2 2
z z z z
+{d—('-2— —l>+Rd—<l—a—> }dCB (57)
c \d c c
c
where
Cd
c
4 Dw
e e 2
1+ D
w

The strain energy stored in an element of the web due to its deforma-
tion as described by Equation (57) is given by

3D
dv = %(T“> [(1+3R2) vt - 2(1+R2)dcv6

+ (1+ % r?) diBZde (59)

The total strain energy stored in the structure in its buckled state
is thus

e it 8 i i



a
1 2 2 2
v 2 .[ EIzvxx = EFBxx Y GJBX
0
3D
+ cyz + _3E (1+3R2) - 2(1+R2)d vB
4 L o)
Cc
1 .2 2.2
+(1+3R)dca } dx (60)

where Y is the rotation of the stiffener base (and thus the elastic
spring) as shown in Figure 7. It is not difficult to show that

JRRSy P
2 (1+ ——9) i

and, therefore, V completely in terms of v and B is given by

a
D
1 2 2 2 % 2 2.2
V=3 f ELv: + ETB2 + GJBS + 3 R(1-R) (9v’-~6d vB+d2B%)
0 c
Iy 2. 2 2 1.2\ .2,2
+ =2 (1+3R)v-2(1+R)de+(1+—R)dBl dx
d c 3 c
> (62)

If the stiffener is loaded by an axial inplane force, the potential
energy of the loading in this case is the negative of the work done by
that loading, namely

Uw = -y = J:[ox §(y,z)dydx (63)
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Substituting Yloua ¥ and w = - yB for the flange, w = 0, and the
c

deformation function L5 for the web into Equation (15) for &§(y,z) leads to

-1 e 18 L 19 o 3 g?
Y ZI e “As dctw(35+140R 140 ® )} Vx
0

3 5 N S S 2
o {Ips i dctw (53 s 84 R 420 R )‘ Bx] o (64)

where IPs is the polar moment of inertia of the stiffener about its shear

center. This quantity can be computed from IP according to

LT T (65)
ps P s c s ¢
where z is the height of the stiffener's centroid above its toe.

The total potential cnergy is the sum of the expressions (62) and
(64),

U=V + Uw (66)

and it can symBolically be represented by an integral of the form

a
U= J’ ‘b(x.V.B.vx.Bx,vxx.Bxx)dx (67)
0

The theory of stationary potential energy requires the integral in
Equation (67) to be a minimum. This leads to two Eulerian differential
equations,




d d
[T T R ) =0 (68a)
v dx ¥ ;;7 e
2
d d
¢B  ~ ¢B +4—~5 8 = 0 (68b)
X dx XX

where the subscript indicates a partial derivative with respect to that
parameter.
Carrying out the operations indicated by the above expressions and

assuming solutions for v and B of the form
mTx mTx
v =v, sin=— and B Bo sin = (69)

leads to a set of two homogeneous equations for the constants LA and Bo.
Nonvanishing solutions for v and Bo can only exist if the determinant
of the coefficients of these equations is zero. Computing this determinant

results in a quadratic equation for the critical buckling stress, (oe)cre’

(0.)?

2 2
. (k2k4-k6) + (Oe)cre (k. k,+k k,-2k k6) + (klk -kg) =0 70

n (G e 3 3

where the k,'s are given by

i
K, = EI (-'};3) 2 +3 ;‘-3’-(%) g (143R) (71a)
C
ky == A +dt (%% # 1—26 R- ﬂfﬁ r%) (71b)
k3-GJ+EF(§-E)2+-3—DE(-§?)2 (1+%R) (71¢)
C
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Pt L £ WP TR
kk Ips i dctw ( s tag R 220 R ) (71d)
. VT
kg = - -—2—(5) (1+R) (71e)
c
243 3 5
%6 * 4ty (35 - 425 M 125 ©) S

Using a similar procedure the critical load for tripping under
constant moment can also be determined. This leads to a quadratic equation

similar to Equation {(70) for the critical moment Mcre’ namely

2 = =2 = = - == =2
More (pkykg) + M (KK, + 2k3-2Zkgke) + (K ky-Kk0) = 0 (72)

The kj's are closely related to the kj‘s defined above, as indicated below,

- I
k, = k (73a)
1 (d -Mit) 1
c 2
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Although the logic is clearly less soundly based, the web deformation

function described by Equation (57) can also be applied to the problem of

the tripping of flat bars. In this case, v and B represent not the dis-

placement of the shear center, but rather that of the outer extremity of
the flat bar. The strain energy is given by

a

d
V= % Dw J. J. {[(vw)xx+(vw) ] -2(1 V)[(v) (v) -(vw)iz]}dxdz
0 0

W XX W zz

% f —;’ 1-R) (9vZ-6dvB+d28%)dx (74)
0

while the potential energy Uw is identical to Equation (64) with the
parameter dc replaced by the flat bar depth d and I a replaced ?y ghe polar
moment of inertia of the flat bar about its outer extremity (- 3 d’t )

The procedure followed to determine the critical stress is the same as

that described previously and results in a quadratic equation identical to

Equation (70). However, in this case, the k,'s are defined as follows:

3

(%) ’ [5’7 a3y + 3 (2¢) : (4-R+R%)
m

=
"
01:0

(B E- e )] o

39




D R e W B 2 2
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m

4
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30 (2) (3w )] o0

2 3 17 L 2.0 .4 2 2
k6 =+d tw [—33 = %20 R+ 140 R™+ 120 (2-2R+R") (tw/d) ] (75¢€)

For a constant moment, Equation (72) is applicable. In this case,

however, the k, functions are related to the k,'s defined as Equations

b
(75a-75f) as follows:
- I
T Y (o Sw— (76a)
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While these solutions for flat bars are approximate, they have the
advantage of not requiring an iterative solution (if be and C are known).
An "exact" solution for end loading exists based on thin plate theory.

The critical stress is determined from the solution of the equation

[cl cos Rfd + <, cosh ad + €4¢, sinh ad] [c2 B cos Bd

-v—c1 B cosh ad] - [-c2 B sin Bd +c1 a sinh ad

sin Bd + ¢

£3 2

+ ¢c,c, a cosh ad] [cl

g sinh a.d] =0 (77a)

where, in this case
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and

.2
B
C3 ( aC )Dw J

The obvious problem with this approach is that an iterative solution of a
transcendental function is required, thus effectively eliminating it as a
practical tool for hand calculation. Solution by computer is quite
straightforward, nevertheless the necessity of an iterative solution may
still be a serious drawback particularly in computer oriented design
synthesis programs. Several levels of iterations may be required in such
programs, thus resulting in the need for a single critical stress to be
evaluated literally hundreds, or even thousands of times. In contrast,
the solutions represented by Equations (70) and (72) are not inherently
iterative by nature, and although admittedly cumbersome, are suitable for
hand calculation. Even when the assumption that certain parameters,
usually be and/or C, are load dependent requires an iterative solution,

the manual use of these expressions is possible.




While solutions which take into account the influence of web
deformations are available for the cases of axial end load and coustant
moment, unfortunately such solutions do not presently exist for the case
of lateral loading as previously indicated. The difficulty is primarily
due to the variation of ox with x and the inadequacy of a single sine
function to represent the buckled shape. The lack of a solution for this
particular loading case is particularly bothersome since the limited data
presented in the previous section suggests a significant influence on
buckling strength by web deformations. This problem is presently being
investigated.

Using the same configurations previously discussed (see Figure 6), a
series of comparisons were made between the solutions which include web
deformations and those which do not. The results of these comparisons are
presented and discussed in this section.

Tables 6 through 9 present buckling coefficients for both tee and flat
bar stiffeners of constant length with varying degrees of rotational
restrain about their toes. T[hese tables clearly reemphas.ze behavior that
was noted in the previous section, namely the increasing significance of
web deformations on buckling strength as rotational restraint increases.
These tables also indicate excellent agreement between the finite element
solutions (the numbers on the tables in parentheses) and the approximate
solutions represented by Equations (70) and (72) for all the degrees of
restraint considered. With regard to the tee stiffener configuration,
however, it is quite noticeable that for small or zero rotational
restraint, Equations (70) and (72) predict somewhat lower (by several
percent) buckling coefficients than do the finite element solutions. It
would appear that this may be primarily due to the fact that in the
finite element model the flange of the tee is modeled by a bar, which is a
one-dimensional line element. Consequently, on computing the work W of
the external forces, the finite element method is unable to include the
effects on the parameters [p and S (see Equations (20) and (34)) of the
finite width and thickness of the flange. As the degree of rotational re-
straint increases, the data strongly suggest that the influence of this

approximation decreases in significance.

43



TABLE 6 - TRIPPING STRESS COEFFICIENTS FOR TEES UNDER END LOADS

T

o

WITH ROTATIONAL RESTRAINT

Tee Stiffener
4y
Tripping Stress [(0 ) X 107]/E
. ¢ Ccre

Mode R Coefficient

m ¢

Eqn. (70)* Eqn. (21)

1 0 24,3 (26.4) 26.3

2 0 65.5 (65.9) 72.6

1 0.826 43.5 (45.3) 48.0

2 0.075 73.1 (73.3) 78.0

1 1.65 5.5 (56.4) 69.7

2 0.150 17.6 (717.7) 83.4

1 4.96 3.4 (75.5) 156.6

2 0.449 85.4 (85.6) 105.2

1 8.20 80.4 (82.7) 243.5

2 0.748 88.3 (88.06) 126.9

1 15.0 86.3 420.7

2 1.36 90.9 L71.2

*Figures in parentheses are finite element

values.,




TABLE 7 - TRIPPING LOAD COEFFICIENTS FOR TEES UNDER END MOMENTS

WITH ROTATIONAL RESTRAINT

Tee Stiffener

4
Tripping Moment [Mcre (dc-h+ % l) ~ 10 J / [1E)
Mode R Coetficient ' y
m ¢
Equ., (72)* Eqn. (35)

1 0 27.1 (29.4) 29.0
2 \) 74,6 (75.1) 80.1
1 0.820 47.7 (49.7) 53.0
2 0.075 81.7 (82.1) 86.0
1 1.65 59.3 (61.4) 76.9
2 0.150 85.9 (86.3) 92.0
1 4.96 78.9 172.8
2 0.449 93.1 116.0
1 8.206 86.0 268.6
2 0.748 95.8 139.9
1 15.0 92,0 464.0
2 1.36 98,2 188.8

AFigures in parentheses arve finite element values.
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TABLE 8 - TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END LOADS
WITH ROTATIONAL RESTRAINT

Flat Bar |
:
4 |
Tripping Stress [(oe)Cre x 10 ]/E
Mode R Coefficient
m c
Eqn. (70)* Eqn. (22)
1 0 6.42 ( 6.44) 6.42
2 0 7.51 ( 7.58) 7.51
& 1 1.00 12.44 12.84
2 0.214 9.10 9.12
1 2.00 17.6 (17.6) 19.3
2 0.427 10.5 (10.5) 10.7
1 5.00 29.3 38.5
2 1.07 13.6 15.5
h 10.0 41.5 (41.2) 70.6
2 2.14 17.0 (16.9) 23.6
1 15.0 49.1 102.7
2 3.20 19.1 31.6
*Figures in parentheses are finite element |
values.
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TABLE 9 - TRIPPING LOAD COEFFICIENTS FOR FLAT BARS UNDER END MOMENTS

WITH ROTATIONAL RESTRAINT

Flat Bar
Tripping Moment [Mcre (d-h+ %-t) X 104] / [IE]
Mode R Coefficient
m c
Eqn. (72)* Eqn. (36)
1 8.99 ( 9.04) 8.99
2 10.50 (10.66) 10.52
1 1.00 17.2 18.0
2 0.214 12.6 12.8
1 2.00 24.2 (24.3) 27.0
2 0.427 14.4 (14.6) 15.0
1 5.00 39.6 54.0
2 1.07 18.5 21.8
1 10.0 55.3 (55.2) 98.9
2 2.14 22.7 (22.8) 33.0
1 15.0 64.8 143.9
2 3.20 25.3 44.2
*Figures in parentheses are finite element values.
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It was noted in the previous section that not only degree of ro-
tational restraint but also stiffener proportions can influence the
amount of web deformation which will be present. An example of this is
illustrated in Table 10 where tripping stresses have been calculated for
the tee stiffener of Figure 5 for varying lengths. It may be noted that
as the length-to-depth ratio decreases there is an increasingly large
discrepancy between the values of the tripping stresses predicted by
Equations (21) and (70), indicating an increasing role of web deformation.
As has been noted,6 tripping for very short lengths is characterized by
deformations consisting mainly of buckling of the web and twisting of the

flange about its centerline. This is clearly a local buckling phenomena
and its presence is indicated in Table 10 by these cases for which large
discrepancies exist between the finite element results and those of Equa-
tion (70). These discrepancies occur because Equation (57), while an
excellent approximation to the deformations which occur in the web during
tripping, is a somewhat less than ideal approximation for local buckling of
the web. Thus, while Equation (70) has been demonstrated to be reliable
for predicting the primary tripping of tee stiffeners, it seems clear from
this example that the possibility of local web buckling must be investi-
gated by other means, such as plate theory.

For tee stiffeners, other geometrical parameters besides a/dc can
influence the amount of web deformation present. In a qualitative sense,
the most significant factor involved seems to be the relative stiffnesses
of flange versus web, since a stiff flange will tend to resist deformation,
therefore, forcing more into the web. Many details of geometry can in-
fluence this ratio and thus, no further attempts will be made to examine
them here. However, Table 11 illustrates the influence of length on
degree of web deformation when there is no flange. The absence of any
significant influence of length on tripping in this case in essence
supports the hypotheses of the importance of flange versus web stiffness

relative to web deformation.
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TABLE 10 - TRIPPING STRESS COEFFICIENTS FOR TEES UNDER END LOADS WITH
VARYING LENGTH/DEPTH RATIOS (NO ROTATIONAL RESTRAINT)

Tee Stiffener
4
Tripping Stress [(0,) . X 10°]/E
Mode _a_ Coefficient
m mdc
Eqn. (70)* Eqn. (21)
il 1.99 320.4 (193.1) 449.8
2.66 217.4 (188.2) 257.7
s 3.99 107.8 (105.2) 120.6
4.06 104.7 (102,5) 117.0
7. 5.32 65.5 ( 65.8) 72.6
7.48 38.3 42.1
i 8.11 34.2 ( 35.8) 37.4
10.64 24.3 ( 26.4) 26.3
! 14.96 17.6 18.7
16.62 16.3 172
e 33.24 12.2 12.4
*Figures in parentheses are finite element
values.
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TABLE 11 - TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END

LOADS WITH VARYING LENGTH/DEPTH RATIOS (NO

ROTATIONAL RESTRAINT)

Flat Bar
4
Tripping Stress ((0)) . * 10 ]/E
Mode a_ Coefficient
m md
Eqn. (70)* Eqn. (22)
ok 1 20.3 (20.0) 20.3
2 9.61 ( 9.51) 9.61
Y 3.12 7.51 ( 7.47) 7.51
4 6.95 ( 6.92) 6.95
£5 5 6.62 ( 6.61) 6.62
6.25 6.42 ( 6.41) 6.42
o 7.5 6.31 ( 6.30) 6.31
10.0 6.20 ( 6.20) 6.20
2 15.0 6.12 ( 6.12) 6.12
30.0 6.07 ( 6.07) 6.07

*Values in parentheses from Equation (77).
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TRIPPING UNDER COMBINED LOADING

The treatment of tripping to this point has considered both inplane
and lateral loadings, but only applied individually. In many practical
situations such loads will occur simultaneously which naturally leads to
the subject of tripping under combined loading.

One approach to this problem is to follow the same procedure used for
the individual loading cases, that is, to equate the strain energy
associated with the assumed deformation function to the work done by the ;
external loads. In this case, however, the work will include contributions
from all the simultaneously occurring loads. Omne stress (or load) is then
solved for (usually the predominant one) and thus becomes the tripping
stress (or load) "in the presence of'" the other applied loads.

As an example, consider the case of a tee stiffener loaded by both an
axial end load and a uniform lateral load. Since a lateral load is present,
the displacement function represented by Equation (40) must be used. The
strain energy associated with this displacement function has previously

been computed, but is repeated here,

2

%a Bf; (~Z—) GJ H_(K) (78)

V-
for convenience. The work done by the lateral load has also been previously

determined,

Wy = - zl._e(%) eg 2 as F_(K) (79)

but here it is represented by the symbol wq to indicate it is the component
due to the lateral load. Equation (20) gives the work done by the axial
end load for the assumed displacement function given by Equation (12);

for displacement Equation (40) the appropriate work expression becomes

2
W =0, 82(1) a 1l m2)? (k-1)%) (80)
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The total work is the sum of the two components,

W W+
1 2/m\ 2 2.2 2 2
=30, eo(—a-) s L'k @2)? &-1)%)
1 (9)g2 ;2
- %8 (I)Bo" a S F (K) (81)

Equating the total work and the strain energy defines the condition
of loading at which tripping will occur. If the axial end load is assumed
to predominate, then carrying out the above procedure and solving for O

produces the following:

2
5 1 a )
G H () + g5 (ﬂ——I S F_(K)

T, 2K+ mt2)? (k-1)2)

(o))

e’ ' cre (82)

As in the case of lateral load alone, the parameter K must be selected so
that the resulting value of (oe)cre is the minimum. Since both the
numerator and denominator of Equation (82) can be represented as quadratic
functions of K, the procedure previously described for computing the
appropriate value of K can also be applied here.

A second approach for computing tripping under combined loading in-
volves the application of the so-called "interaction' formula. In this
approach, for the type of loads considered here, tripping is assumed to

occur when the following condition is satisfied:

o B Y
———‘)’-——— + M“ ] + —3——] =1 (83)
(oe cre cre qcre
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In this expression (ce)cre’ Mcre’ and 9. e 3T the failure “loads"
corresponding to separate application of the three types of loads*
considered (and all for the same mode number even though minimum failure
loads for the different loads may occur for different modes). The
indices a, B, and Yy, while often suggested by theoretical considerations,
are usually selected empirically on the basis of experimental and/or
numerical results.

Limited calculations with'expressions such as Equation (82), an
example of which is illustrated in Figure 8 for the "tee" of Figure 6,

suggest that for design purposes a linear interaction, as follows,

10
08
BASED ON EQUATION (82)
06 |-
P
Pere
04 —
LINEAR
-’—. + L L |
Pere  Gcre
0.2 p~—
| | 1
0 0.2 04 0.6 0.8 1.0
0
Ure

Figure 8 - Interaction Diagram for Combined Axial and
Lateral Loads

*The distinction between M and the moments associated with q is the

following. The moments associated with q arise due to local bending of the

plate-beam between supporting transverses, whereas M is the moment compo-
nent, approximately constant between adjacent transverses, due to overall
grillage bending.
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o

e M q
+ + =1 (84)
(oe)cre Mcre Aere

is the appropriate one to use. Although a bit conservative, this selection
seems warranted until further evidence, either analytical or experimental,
indicates a more realistic choice.

Generally speaking, the worst loading condition which can occur is
one in which all the loads present are directed so as to have a de-
stabilizing effect on the structure, i.e., the signs of all the ratios in
Equation (84) are positive. Certain loads, however, may effectively
contribute to structural instability only when they act in a preferred
direction, such as a compressive stress oe or a positive moment M, for
example. When such loads act in the opposite direction they will produce
a stabilizing effect in the structure which will be indicated by a negative
sign for the appropriate ratio in Equation (84). In such cases, the worst
loading condition will likely be one in which only some of the loading
components are present. The choice of what loading components to include
in design calculations and whether to take into account stabilizing
effects is a decision the designer must make on a case-by-case basis
relative to his knowledge of what loading combinations can and are likely
to occur.

Relative to the choice of which approach to adopt in treating tripping
under combined loading, the interaction formula approach offers certain
practical advantages. Empirical or semiempirical solutions, as well as
those of a more vigorous analytical nature, are readily adaptable to an
interaction formulation., This is particularly significant in this case
since tripping expressions, which take web deformations into account, are
not presently available for lateral loading. Semiempirical solutions,
therefore, will have to be employed, at least on a temporary basis. The
form of the interaction expression, through the indices a, 8, and Yy, also
can readily accommodate the results of experimental investigations, if and

when such data are available (and regardless of what values any analytical
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theories say such indices should assume). This great flexibility and the
ease of application that the interaction formulation offers make this

approach a very reasonable and practical choice for design applications.

ESTIMATION OF PLATE ROTATIONAL RESTRAINT

The numerous examples presented more than adequately illustrate the
significant increases in tripping strength that rotational restraint along
the toe of the stiffener provides. To take advantage of this added
strength, it is necessary to be able to estimate the degree of rotational
restraint that the plating, to which the stiffener is attached, provides.

One approach to this problem is to apply Rayleigh's principle as
previously described but to include one frame spacing of plating in
addition to the stiffener. When tripping occurs under axial end load the

plating is assumed to deform laterally according to the expression

= mmx Iy
i sin - sin b (85)

Since the junction of the stiffener web and the plating remain at right

angles, this expression can readily be written in terms of the rotation £

of the stiffener, giving

w =R (%) sin

)

(o, stn =) (2) s 32

Computing the strain energy of the plate-stiffener combination and the

work done by the external forces and equating the two allows the critical

tripping stress to be determined as follows,
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22,0 (mmy 2, e
GJ + E(Is°+D) (a ) + - ":be
(oe)cre b (87)
0> %b
B S |
2m (oe)pbe }

where O:be is the classical elastic plate buckling stress for mode

number m,

e 22(2) " [1+(2) ] )

and (oe):be is the peak value of stress (at the stiffener) at elastic
plate buckling corresponding to a nonuniform distribution of stress in the
y-direction. (When the distribution of stress in the y-direction is
m m
uniform, (oe)pbe is equal to opbe')
If it is assumed that the rotational spring constant of the plate

interacts linearly with the axial inplane stress,

o
it (89)
m
(oe)pbe
where Co is the spring constant of the unloaded plate, then this relation-
ship can be substituted into Equation (21) and a modified expression for

(o)) determined. This gives
e’cre

cJ + E(Iz§2+r‘) (‘:—") 0 S (a_)

m1
(oe)cre = C 2 (90)

o a
Ip 2 m (mﬂ)
e’pbe

(o
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An examination of Equations (87) and (90) indicates that they are
identical provided that

a B o
% (ﬁ-) t g Te (oL

Solving the above expression for Co and making use of Equation (88) pro-

vides the following

2 2 e
17D mb
Mt [1* oyl J (92)

which, in combination with Equation (89), is the relationship being sought.
For practical applications, certain modifications of the above ex-
pressions are desirable at least until numerical and/or experimental

validation of the theory can be provided. One such modification involves
m

e’pbe

not, in general, correspond to the minimum plate buckling stress since

the use of the buckling stress (o in Equation (89). This stress will
the mode number m used in determining (Oe):be is the tripping mode
number. This mode number will generally be lower than that corresponding

to the minimum plate buckling stress, here denoted by (o) Although

the problem is being investigated, there remains no cleai 32§erstanding of
the state of restraint (or destabilization) provided by the plating when
the stress condition (Ge)pbe < O < (oe)r;be holds. (Also, if the true
tripping mode shape contains any Fourier components of the mode correspond-
ing to the minimum stress plate buckling mode, it appears that linear
theory would predict that the plate restraint would drop suddenly to zero
as the minimum plate buckling stress is approached, although probably not
in a linear manner.) Consequently, it is suggested that Equation (89) be

modified to the following:
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0
¢ [1— e ] 0 < (o)
\] (ae)phe e e’ pbe
U (93)

0 g > (o))

e - " e pbe

Since a conservative estimate of effective width will lead to an
optimistically high (unconservative) estimate of (”n)pbe one further
modification is called for, at least until more realistic values of
effective width are routinely applied. This involves the use of the

classical elastic plate buckling stress npbc' def fned by

b 3
4n"Dp
0hbo Ll\2 (94)
in place of the value (Uo)pbo' This leads to the formulation for (C:
o
C (l-'-"*-) 0 <0
o o ¢ pbe
pbe
C = (95)
0 (8] > 0
e —~ pbe

If the conservatism of Equation (95) is viewed to be excessive, then a

less conservative option is possible through the use of the average piate
stress o (not to be confused with the mean stress for the cross section
um) in place of O in the above. However, {t {s significant to note that
{f the common practice of assuming a unfform distribution of primary stress
for stress levels below plate buckling {s adopted, then O™ un - Qg o,

m
(v) and Equations (93) and (95) are identical.

phe s ophc'
Because of {nsufficient knowledge concerning the plating's behavior,

(8
©

one additional modification must be considered with regard to estimating

the appropriate value of €. The expression for Co' Equation (92), was
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derived on the basis of axial end loading and assumes that the tripping
mode shape was a constant amplitude sinusoid. For axial end load and
constant moment this is appropriate, but for lateral loading the more |
complicated tripping mode shapes which have been noted and described make
the application of Equation (92) for m > 1 open to question. Discretion is
obviously called for in this situation. Since C0 is a monotonically in-
creasing function of m, one approach which can be adopted without fear of
overly optimistic predictions is to use the minimum value of Co' correspond-

ing to m = 1, namely

(96)
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for all mode numbers. While this "minimum restraint' approach will
obviously result in conservative predictions in some instances, its
application will still offer the potential for significant increases in
tripping strength since the greatest relative Increases are assoclated
with the initial increments of rotational stiffness. Until additional

research clarifies these issues, this approach is recommended.

INELASTIC EFFECTS .
Structures, in general, will begin to exhibit noulinear behavior at
stress levels below the yield point due to the presence of stress concen- :
trations, fabrication distortions, residual stresses, etc. As a result of
the tremendous complexities involved in treating this problem in a
rigorous manner, there is, at present, no completely satisfactory method
for considering the inelastic tripping of stiffeners welded to continuous
plating, particularly for application to structural design calculations.
It {s possible, however, to apply some simple "corrections" to the elastic
solutions previously deri{ved which are intended in a gross manner to
approximate the effect of such nonlinear behavior on the tripping strength

of plate-stiffener combinations.
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The approach, which is described in more detail elsewhere,3 involves

the application of a parameter referred to as the structural proportional
limit ratio P This ratio is defined as

B °ps’°y (97)

where © i is the structural proportional limit stress and

material tensile yield stress.
3
ships.

Iy is the
A value of - 0.5 is typical for welded

Assuming that the inelastic tripping stress (oe)Cr is given by

E
C = (o,

Jer T E e’cre (98

and approximating the ratio Et/E using the Ostenfeld-Bleich quadratic
parabolae

E o(oY-o)

t
e ) el (99)
E ops(oY ops)

leads to the following tripping strength expressions:

(Oe)cre (Oe)cre 5-pr OY
(oe)cr ;o
GY (100)
oy |1-p_(1-p ) ——---]
$ [ = . (Oe)cre
(oe)cre " pr OY
\

Although the nonuniform stress distribution renders the situation

considerably more complex, this general approach can also be applied to
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the case of constant moment or uniform lateral pressure. In one such
treatment, Equation (100) is still used, although, in these cases,
(0)) is replaced by the maximum compressive bending stress corresponding

e cre

to either Mcr L T obtained by dividing the bending moment by the

section modulﬁs Z of the plate stiffener section. The difficulty with this
approach is that it inherently implies that some sort of major structural
"failure" will occur when the maximum compressive stress in the outer

fiber of the stiffener reaches the material yield stress. This is clearly
a conservative assumption. An alternative approach might be to assume

that the inelastic tripping moment Mcr is given by

(ED),
Mcr e EI Mcre (101)

where (EI)t might be called a "tangent stiffness.'" Approximating the
ratio (EI)t/EI in a manner similar to that of Equation (99) for Et,E will

lead to the following expressions for inelastic tripping moment

cr

M M <p_M
cre cre — 'r p
MCI‘ =1
N (102)
3 4 0551
Mp [1 pr(l pr) v ]
cre
N e e pr Mp

In these expressions Mp is the fully plastic moment for the plate-stiffener
combination and Ps while still a structural proportional limit ratio, now
represents the ratio of the '"proportional limit moment" (the value of the
moment beyond which the moment-curvature relationship of the plate-
stiffener begins to behave in a nonlinear fashion) to the fully plastic
moment. Although there is little specific data to indicate a value for P,
in this case, a value of przs 0.5 as recommended for use in Equation (100)

would seem to be a reasonable choice with which to start.
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The degree to which “cr obtained from Equation (102) will differ from
that obtained from Equation (100) is primarily dependent on the shape
factor of the plate-stiffener combination. The shape factor is the ratio
of the fully plastic moment of the cross section to the moment required to
cause initial yielding. For stiffeners which have much of their cross
sectional area concentrated in the flange, the shape factor will take on
values not much greater than 1 and, consequently, the differences resulting
from using the two approaches will be minimal. For flat bars, however,
the shape factor will take on greater values and the corresponding differ-
ences between computed values of the inelastic tripping moment will be more
substantial. For example, the shape factors for the cross sections illu-
strated in Figure 5 are 1.72 for the flat bar and 1.30 for the tee.

A similar approach can also be applied in the case of combined load-
ing, with the inelastic "correction" being applied to the stresses
corresponding to the predominant loading. Thus, where uniform compressive
loading is predominant, Equation (84) would be solved for o (which in this
case would represent the critical elastic tripping stress in the presence
of the other loadings) and this stress then substituted in Equation (100)
in place of (oe)cre'

Since tripping stresses must often be calculated using an iterative
scheme (when plate rotational restraint is included) there are two possible
approaches for including the inelastic correction. One approach involves
carrying out the iterations "completely elastically," including the use of
opbe in Equation (95) for C, and then applying the inelastic modification
to the converged solution. The alternate approach involves applying the
inelastic modification within each iterative cycle. In this case it would
appear reasonable to use opb, the inelastic plate buckling stress, rather
than opbe’

(100) can also be used to compute the necessary value of opb.

in Equation (95). By replacing (oe)cte with opbe’ Equation
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CONCLUSIONS

This report describes the application of classical energy theory to
the problem of developing design oriented techniques for predicting the
lateral torsional (tripping) instability of plate-stiffener combinations.
Closed form solutions have been developed which show excellent agreement
with numerical results generated using the finite element method for axial
end loading and constant moment, but which are less universally reliable
in treating plate~stiffeners under uniform lateral loading.

The comparative solutions made with the finite element analyses have
very clearly illustrated the importance of including the effects of web
deformations, particularly for the stiffeners possessing substantial
flanges. Solutions which ignore these effects have been shown to retain
acceptable accuracy only when the rotational restraint present along the
stiffeners line of attachment to the plating is nonexistent or very
small. In the course of the development this discovery provided the in-
spiration which eventually resulted in the derivation of solutions for
tripping under axial end load and constant moment, including the effects
of web deformation. These solutions have provided tripping load pre-
dictions which are in excellent agreement with the corresponding finite
element analyses for the complete range of rotational restraints con-
sidered. They are clearly more cumbersome to use in hand calculations
than the more simplified (and less accurate) expressions, but their
complexity does not preclude their effective use in manual calculationms,
particularly in view of the increasing capability and sophistication of
hand-held calculators and desk top mini-computers. These solutions are
obviously ideally suited for programming on digital computers and thus
should be extremely effective when incorporated into large structural
synthesis programs whose primary applications are in the preliminary
stages of structural design.

The major problem area encountered in this study is that of estimating
the critical values for tripping under lateral loading. For the solutions
presented, errors which range approximately from O to 20 percent can

reasonably be expected for the primary tripping mode (m=1l) with zero or
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extremely limited rotational restraint. For larger degrees of rotational
restraint and the higher modes which are a natural consequence, the
corresponding errors are appreciably larger. The inability at present to
take web deformations into account and to adequately model the generally
more complex modal shapes (apart from the web deformation aspect) are the
primary culprits. These difficulties, in turn, are related to the
functional dependence of the o, stress on the x-coordinate. Until more
satisfactory analytical solutions are developed, either semiempirical
solutions based on the theory presented here and numerical analysis, or
finite element programs directed specifically at the tripping problem,
will have to be utilized.

Several other areas for which further study is required have been
indicated, or at least alluded to, in the main text. With regard to the
estimation of plate rotational restraint, several problem areas can be
identified: (1) the estimation of restraint for the more complex tripping
mode shapes which occur when lateral loading is present, (2) an improved
definition of the influence of plate buckling on plating restraint, and
(3) the effect of post buckling behavior of the plating on stiffener
tripping. Inelastic tripping behavior is another very fertile area for
further research. It is difficult to be specific in this area since the
present design oriented techniques as outlined here are extremely crude
and a careful examination of the whole area is easily justified. Tripping
of nonuniform and unsymmetrical stiffeners are also subjects of major and
practical interest. This "wish list" is not all-inclusive, nor is it in-
tended to be, but it should clearly indicate that there are certainly
many questions remaining to be answered with regard to the tripping
phenomenon.

The ultimate goal of this study being design applications, this
report would not be complete without consideration of the current Navy
design practice relative to stiffener tripping. In this design practice8
the maximum ratio of stiffener span to flange width (a/fw), for which
support is required only at the ends, is given by
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(103)
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(104)

then Equation (103) can easily be shown to be identical to Equation (21)
with C = 0, (oe)cre = OY' v=20,3, and m = vY2. The use of this criteria
is designed to insure that stiffeners are proportioned such that tripping
will not occur at any stress less than yield. This criteria is somewhat
conservative since it is based on a theory for purely axial compression
(whereas most stiffeners experience loading which is a combination of
bending and axial compression) and it ignores the rotational restraint of
the plating (C=0). Factors which offset this inherent conservatism to a
small degree involve the selection of m = V2 and the neglect of web
deformations. The value of m chosen is intended to reflect the degree of
rotational restraint in the plane of the web anticipated at the ends of
the stiffener. The neglect of web deformations in this case is not
significant since, when plating restraint is also neglected, the effect of

web deformations is in general quite small. It should also be noted that
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the criterion represented by Equation (103) is applicable only to tee
stiffeners and for a number of reasons cannot be appropriately applied to
flat bar stiffeners.

As a final comment, it has become quite common in reports of this
type to decry the lack of experimental data which are available for
validation of the theories presented. This report is no different. The
value of good experimental data cannot be overestimated because any
predictive techniques, no matter how sound their theoretical base, are
only of value insofar as they are capable of describing what occurs in the
real world. The development of confidence in the application of new
technology in the design process will continue to be a painfully slow
process without the validation only correlation with experimental data can

provide.
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APPENDIX A
SAMPLE PROBLEMS

Although the application of many of the expressions in the main text
is perfectly straightforward, the use of sample problems can often be
very enlightening, particularly when the solution procedure requires a
number of steps.

Consider the plate-tee stiffener combination whose geometry is defined
in Figure 6. A number of geometrical parameters require evaluation in
order for the tripping loads to be determined. These parameters are

defined in Figure 2 and for this example have the following values:

I = 58.79 "
VA

~ = 1498 o

S

P MOST e

J = 9.34 cm“
I = 3306 cn’
p

ZERO ROTATIONAL RESTRAINT

If no rotational restraint is assumed, i.e., C = 0, then a reasonable
value for the tripping stress for mode m = 1 under axial end loading may
be found using Equation (21). Assuming values of E = 6.894 X 106 N/cm2
and v = 0.3 (which resultlin a value G = 2,652 x 106 N/cmz), this

expression gives

1 6
(oe)cre = 3306 [(2.652 x 107) (9.34)

+ (6.894 x 10%) ((58.79) (14.98)% + 40.57) (n/160)°)

= 18,130 N/cm? (A.1)
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The procedure for determining the tripping load under lateral loading
is somewhat more involved. First the coefficients of the Hm(K) and Fm(K)
functions must be determined. The most convenient form of these ex-
pressions is provided in Appendix B. Using these expressions the hj co-
efficients can be readily calculated, giving for mode m = 1 and C = 0 the

following,
h0 = 124.0
h1 = -248.0 (A.2)
h2 = 126.4

To calculate the coefficients f,, a few additional geometrical parameters

J

(not previously defined here or in Figure 6) are required, namely

4 d - 14033 cm

w
dc = 15.06 cm
2 (A.3)
Af = 11.218 cm
4
I . = 58.34 cm
zf
The parameter S, also required, is defined by Equation (33). This
parameter thus takes on the value,
0 5
S = 29,890 cm (A.4)
The coefficients fj are also functionally dependent on the degree of é
vertical fixity of the stiffener ends. Considering first the simply §
supported case leads to the values,
fo = 8.619
fl . -14.958 (A'S) .
f2 = 6.958

68




’.lllllllll"~'- —— —— —

The coefficients h, and f are used to compute the three coefficients of

3 A
the quadratic equation in K, Equation (49). Using the above values, this

B R R R R e T Ty R TSV T SRS X

- results in the expression

165.1K - 453.3K + 282.7 = 0 (A.6)

for which two roots can readily be computed, namely

K1 = 1.788

K2 = 0.958

(A.7)

The critical tripping loads corresponding to these two roots can now be
readily calculated using Equation (46). This expression requires the
vertical moment of inertia of the plate-stiffener combination which,

through the routine computation, is found to be

I = 2071 cm® (A.8)
The functions Hl(K) and Fl(K) must also be evaluated. Using the two
roots for K and the coefficients hj and fj previously defined, the
following values result,
By s
Hy(K) = 84.67 2.421 !
(A.9) 3

Fl(K) =  4.118 0.675

Substitution of the above values into Equation (46) finally leads to thc

desired result, namely
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- 16,540 N/cm

qcre = for K = Kl (A.10)

- 2,885 N/cm
for K = KZ

Of these two values, the one corresponding to the root K2 is the one of
Practical interest. The critical value corresponding to Kl might be
termed a "high energy" tripping load and, although mathematically possible,
it represents a tripping condition which could never occur in the real
structure.

For the case where the ends of the stiffener are clamped, the pro-
cedure is the same as Previously described eéxcept that in this case the

coefficients fj take on the following values,

M
]

-0.381
£, = 3,042 (A.11)

£, = -3.042

These values and the coefficients hj previously defined lead to the

quadratic equation,

X T TR 0 (A.12)
and the roots
K, = 1.054
(A.13)
K, = 0,725

These roots, in turn, lead to the critical tripping loads
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+ 4,397 N/cm

. A for K = Kl (A.14)
- 38,040 N/cm
for K = K2

The occurrence here of tripping loads of both signs (positive and
negative) indicates that tripping can occur due to loads acting in either
direction, unlike the simply supported case. Thus, both of the above
tripping loads represent realistic tripping phenomena. Which of these
loads in any given situation is the one of practical interest will depend

on the direction of the lateral loading or loadings under consideration.

FINITE ROTATIONAL RESTRAINT

If any but a very small amount of rotational restraint along the
stiffener's line of attachment to the plating is to be considered, then
the solutions for tripping which include web deformations should be
utilized. For axial end loading this solution is given by Equation (70),
the coefficients for which are provided by Equations (71). These

expressions involve the additional parameters

2.376 x 10° N-cm

(=]
"

w
= 11.26 cm2 (A.15)
A = 21.56 cm
s
I = 880 cm6
Ps

as well as the dimensionless rotational restraint parameter, R. Assuming
a rotational spring constant of the supporting plating of C = 30,000 N-cm/

rad leads to a value for R of

R = 0.322 (A.16)

For this value of R the coefficient k, has the following values (for m=1),

j

71




PE—————

1.225 x 106 N

k1 -
2
k2 = ~15.53 cm
k 10 % 10° N-cm?
3 1.610 1 -Ccm (A.17)
k“ - -99 2 cm4
kg = -10.81 X 10° N-cm
3
k6 11.99 em

which lead to the quadratic equation

2 4
1397 (007 = (2363 < 10"y (o), + 0.803 x 10" =0 (a.18)

cr ¢

and tinally, the roots

(§) 2
‘ 1.66 X 107 N/cm

(9 ) cre * (A.19)

"
l3é,700 N/em™

The root of interest i{s the second one; the first root represents a
solut fon mode which {8 mathematically but not physically possible.

For the case of lateral loading, solutions which include the effects
of web deformations are not presently avaflable. Consequently, to treat
this case one has the choice of ignoring the influence of the rotational
resistance, or {f this course {s not preferable, of making use of an
available finite element program. Finfte element results for the problem
being examined here are presented {n Table 5 fn the main text for several

values of rotational resistance.
INELASTIC EFFECTS

2
If the material has a yleld stress of Oy = 20,000 N/em™ and a

struccural proportional limit ratio Pe X 0.5 s assumed, then the axial

LI . o




end loading solutions for both zero and finite rotational resistance should

be adjusted for inelastic effects according to Equation (100). For

Pl 0.5, this expression becomes

1
(Ue)cre (Ue)cre =2 % 3
3

(oe)Cr - (A.20)
[§) 1
Y i
0 1= 77—

b [ 4(0e)cre] i

1

(Oe)cre * 2 OY

Thus for zero rotational restraint, the inelastic tripping stress becomes

20,000
= i (I St
(Og)p = 20,000 [1 Ax 18.130]
(A.21)
= 14,480 N/cm®
and for C = 30,000 N-cm/rad
20,000
(Oe)cr 20,000 [1- 4_§~§ZT766]
(A.22)

17,120 N/em®

[f the "effective width" for plating effectiveness under inplane loading
is also assumed, in this example, to be equal to 30.5 cm and the stiffener
spacing b = 45 cm, then the mean inelastic tripping stresses can be

computed according to Equation (27). This expression gives

(0 ) = 2L:56 + (30.5 x 0.8)
mer © 21,56 + (45.0 x 0.8)

X 14,480

(A.23)

2
= 11,560 N/em”™




for zero rotational restraint and

(0 ) = 2L:56 + (30.5 x 0.8)
m’cr ~ 21.56 + (45.0 x 0.8)

x 17,120

(A.24)
= 13,670 N/cu®

for C = 30,000 N-cm/rad.
Since the classical plate buckling stress for the plating in this
example (a=160 cm, b=45 cm, t=0.80 cm) according to Equation (94) is

g = 7,880 Nfcm® (A.25)

pbe 0pb

it should be immediately clear that iterations are unnecessary in this
case and that the appropriate solution (assuming that the resistance
represented by C is due to the plating) is the one corresponding to C = 0
(zero rotational restraint).

To examine how the iterative procedure is carried out, consider the
same stiffener attached to plating 1.2 cm thick at a uniform spacing of
38 cm. In this case, the classical plate buckling stress (for a=160 cm,
b=38 cm, t=1.2 cm) is

o, . = 24,860 N/ cn? (A.26)

pb

Correcting this value for inelastic effects (using Py = 0.5 here, also)

gives

o = 15,980 N/cm’ (A.27)
pb
Since the dimensions of the plating do not enter into the calculations

for (oe)cre and (oe)cr’ the previous values computed are also valid here.

¥

k. |

74




Since C and (oe)cr are functionally related by Equation (95), the value of
(oe)cr calculated for C = 30,000 N-cm/rad can be used as a "starting"
value in the iteration process. The value of Co used in Equation (95) is

defined by Equation (96) which, in this case, has the value

Co = 158,100 N-cm/rad ; (A.28)

Substituting the critical stress (ce)cr = 17,120 N/cm2 into Equation
(95), produces

17,120
P} Phctvorli
15,980) el

C = 158,100 (l
or (A.29)
c=0
This value may now be used as the second estimate of C, or (hopefully) to
minimize the number of cycles, a value may be selected which is somewhere

in between the "assumed" (C=30,000) and "calculated" (C=0) values. Try
C = 5,000 N-cm/rad for the second estimate. This gives

() _ = 21,070 N/cm®

e’cre
(A.30)

2

(oe)cr = 15,250 N/cm

and, consequently,
15,250
= - el | & -

C = 158,100 (1 15‘980) 7,220 N-cm/rad (A.31)

Now, assume C = 6,000 N-cm/rad. This results in
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2
(Oe)cre = 21,840 N/cm

2
(Oe)cr = 15,420 N/cm (A.32)

C = 5,540 N-cm/rad

Now, assume C = 5,800 N-cm/rad. This results in

2
(oe)cre = 21,680 N/cm

(0, = 15,390 Nlox® (A.33)

C = 5,840 N-cm/rad

Because of the very slight changes in the tripping stresses (oe)cr
between the last two cycles, practical considerations would dictate that
the iteration process has converged sufficiently for engineering purposes.

Thus, the final solutions, rounded off, are

(©,) o = 21,700 N/en®

S (A.34)

2
(Oe)cr = 15,400 N/cm

COMBINED LOADING

Returning to the original problem (b=45 cm, be-30.5 cm, t=0.80 cm),
consider the situation when both axial end loads and lateral loads are
occurring simultaneously. In this case elastic tripping is assumed to

occur when the expression

(6]
+ _ﬂ—_ = ] (A.35)

e
(oe)cre qcre

is satisfied. If rotational restraint is ignored (C=0), then values of
(oe)cre and %ire (for clamped end conditions) have previously been
computed. Thus, the above expression becomes
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+ -
18,100 ° 4,400

1 (A.36)

For a lateral loading of magnitude q = 450 N/cm (corresponding to a
uniform pressure of 10 N/cmz) the maximum bending stress in the flange
of the stiffener will be on the order of 5,000 N/cm? Thus, at tripping,
0o will be the predominant loading. Solving for - and designating the

result by (Ge)cre,q to distinguish it from (oe)cte’ gives
450
(Ue)cre,q 18,100 (1- 4,400)

(A.37)
= 16,250 N/cm?

Since O¢ is the predominant loading, the inelastic correction is applied

to (oe)cre,q resulting in

2
(oe)cr,q = 13,850 N/cm (A.38)

The mean axial tripping stress is then

2
(Gm)cr,q 11,060 N/cm (A.39)
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APPENDIX B
QUADRATIC COEFFICIENTS FOR Hm(K) AND Fm(K) FUNCTIONS

The functions Hm(K), ﬁ;(K), and Fm(K), defined in the main text in
relation to laterally loaded beams, are quadratic functions of the scalar

parameter K. Thus these functions can be written as

2
Hm(K) - ho + th + th

= L
H (K) =y + B K + Bk (B.1)

2

Fm(K) i fl(K) + f K

0 2
The determination of the appropriate value of K requires that the specific
coefficients hi’ E;, and fi be identified. This can be readily accom-
plished simply by rearranging and collecting terms for each of the three

functions. Therefore, from Equation (43a) one obtains

2 7
hy = @2)% + @2)* TE (s 344T) + 2L (B.2a)
a GJ m GJ
4 T°E E 2C
hy = -2 [(m+2) + (we2) " = (I3 SA4T) + “2 ] (B.2b)
a GJ m GJ
an -2 2a2C
h, = 2(m 2,0m+2) + [ s2)*] LE ¢1 3% + 22C (B.2¢c)
z 2
a GJ T GJ

Similarly, from Equation (43b), the coefficients for ﬁ;(x) are defined

2 2

By = m+2)4 (Z—") + 6@2)? (1-v) + i;ncd
w

(B.3a)




o 2 2
hy = - 2| (@+2)? ("—d) + 6+2)? (1-v) 4+ 32°C_ (B.3b)
* wZD d
w

2 2
hy = '+ @)1 (12) ° 4 1) 2mes) (1-v) + 8aC (B.3c)
o ™D d
) w

For the function Fh(K), two sets of coefficients must be defined, one for

the simply Supported case and the other for the clamped case.

For the
simply supported case Equation (45) will yield
6d
2 3 w 1 2
fo = (m+2)° ~ g = = [Aftf (dc—h+ 7 t) +bet h] (B.4a)
1 s
£, = - 22)? + 5 [1+m(m+2) {1+ 4 2”
T (m+1)
124
W 1 2
+ [Aftf (a,-n+ 3¢ +b_t hJ (B.4b)
mSs
£, = n’ + @r2)? - 6—2 [l-hn(m+2) {1+ 1 2”
T (m+1)
12d
w 1 2
i [Aftf (dc-h+ 3 :) +b_t h] (B.4c)

3 w 1 2
fo = - = = -177; [Aftf (dc-h+ 7 :) +b t h] (B.5a)
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6 1
f1 = ;5 [1+m(m+2) ‘1+ ]

(wt1)2
12d
w 1 2
+ ) [Aftf (dc-h+ 7 :) +b,t h] (B.5b)

6 1
£ == 8 Hintaia) {1+ }]
2 [ (m+1) 2

124
w 1 2
g‘ [Aftf (dc-h+ 2 t) +bet: h] (B.5c)

(Note that in the expressions for the fj’ the symbol h for the location of
the neutral axis should not be confused with the coefficients hj previously

defined.)




. APPENDIX C i
COMPARISONS WITH EXPERIMENTAL DATA

Although relevant experimental data on tripping failure are virtually
nonexistant, the Naval Construction Research Establishment (NCRE) grillage
tests previously cited provide data on two steel grillages whose ultimate
failure was ascertained to have been caused primarily by longitudinal stif-
fener tripping. The pertinent scantlings (mean values) of the two gril-
lages, identified as grillages la and 1lb, were as follows:

Grillage la 1b
; a. = 48 in. 48 in.
: b = 24 in. 24 in.
t = 0.315 in. 0.310 in.
d = 6.05 1in. 6.0 in.*
tw = 0.284 in. 0.28 in.*
fw = 3.11 dn. 3.0 in.*
tf = 0.56 4in.* 0.56 in.*

*Nominal values 3

: Both grillages were nominally identical, the only difference being the
presence of a 15 psi lateral loading on grillage 1b.

GRILLAGE 1la

Employing a modulus E = 30 X 106 psi and a Poisson's ratio v = 0.3
the elastic tripping stress for grillage la according to Equation (70)
with C=0and m = 1 is

L b

(Oe)cre = 104.7 ksi (c.1l)

Substituting this value into Equation (100) with Oy = 37 ksi and pr==0.5
leads to an inelastic axial tripping stress

(oe)cr = 33.7 ksi (c.2)




Since the classical elastic plate buckling stress, cpbe, given by Equation
(94) 1is about 18.7 ksi, the assumption of the value C = 0 is thus seen to
be correct and no iteration with regard to this parameter is necessary.
Therefore, one may proceed directly to the calculation of the mean tripping
stress~(om)cr.

The calculation of the mean tripping stress requires the knowledge of
the plating effective width be' Since the grillage at tripping has been
loaded above the level of plate buckling, it is clear that the plating
should be expected to be somewhat less than fully effective. Assuming3
the following expression

_25 5 % _ if (c.3)
where, in this case, B ié a plate slenderness ratio
4 =il /_3__; (C.4)
t VE
leads to a value of effective width
be 2~ 0.607b = 14.6 in. (C.S)

Inserting this value into Equation (27) (with (oe)cre replaced by (oe)cr)

in turn provides the desired mean inelastic tripping stress,

(Um)cr = 24.5 ksi (C.6)

This value compares quite favorably with the experimental value of 27.8 ksi
measured at NCRE.
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. GRILLAGE 1b
Grillage 1b is nominally identical to la, differing only through the

addition of a 15 psi lateral pressure. For this grillage, using Equation
(70) with C = 0, m = 1, and the scantlings previously listed, the elastic

axial tripping stress becomes

(Ge)cre = 99.4 ksi (C.7)

(Note that this value does not yet include the effects of lateral pressure
and differs slightly from that of grillage la because of slight differences
in the tabulated mean values of the various scantlings.) To include the
effects of the lateral loading, the tripping load due to lateral loading
alone is computed. Assuming an effective breadth of 50t for the combined
plate-stiffener combination and then substituting the appropriate parameters
and coefficients into Equation (46) results in a critical lateral loading

for clamped ends, C = 0, and m = 1,

a4, = + 17,100 1b/in. (c.8)

The applied lateral loading of 15 psi represents an effective line loading

of 360 1b/in. for 24 in. frame spacing. Using the linear interaction Equa-
tion (84) the elastic axial tripping stress in the presence of lateral

1oadihg can now be computed,

@) @) (1——‘1—)

e’cre,q e’cre

360
= 99.4 (1 - m) (C.9)
= 97.3 ksi
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Since it is easily demonstrated that at failure the axial load is predomi-
nant, the inelastic tripping stress can now be calculated in the same

manner as for grillage la, using Equation (100). This gives

(oe)cr,q = 33.5 ksi (C.10)

Assuming the same expression for be/b as for grillage la, leads to a value

of effective width

be = 0.600b = 14.4 in. (C.11)

and finally to the mean inelastic axial tripping stress

(Um)cr,q = 24.1 ksi (C.12)

The corresponding experimental value from the NCRE tests is 27.1 ksi.
Again agreement appears quite reasonable.

Although the agreement between analytical and experimental results
appear quite encouraging, it is only fair to point out that several param-

eters whose values are difficult to define precisely can influence the

predicted analytical values to varying degrees. The most significant,
perhaps, is the choice of plating effective width which is necessary to
determine "mean' from ''peak' stresses. It can be demonstrated that, de-
pending on the degree of plating effectiveness assumed, a rather wide range
of mean tripping stress values can result. For example, in the case of
grillage la, the inelastic axial tripping stress (Ue)cr = 33.7 ksi, which
is a peak stress, can produce mean tripping stress values (om)ct as high

as 33.7 ksi for fully effective plating to as low as 10.2 ksi for complete-
ly ineffective plating. The most appropriate value lies somewhere in be-
tween these extremes. Indicating that such wide ranges of predicted values
can exist should not be interpreted as completely negating the value of the
excellent agreement described here, rather it serves to point out that
caution must be exercised in attempts at experimental correlation when

limited amounts of data are available.
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